- Регистрация
- 09.04.2020
- Сообщения
- 353 752
- Реакции
- 32 555
- Монеты
- 1 191
- Оплачено
- 0
- Баллы
- 0
- #SkladchinaVip
- #1
Усиленное обучение [Джеймс Девис]
- Ссылка на картинку
-
Данное руководство по усиленному обучению (Reinforcement Learning, RL), охватывает теоретические
основы, практические применения и современные достижения. В начале дается определение RL, его исторический контекст и ключевые отличия от других видов машинного обучения. Примеры применения RL охватывают игры, робототехнику, финансовые рынки и управление ресурсами.
Математические основы включают марковские процессы принятия решений, состояния, действия, награды и политики, а также Беллмановские уравнения и итерацию ценности. Основные алгоритмы RL, такие как метод Монте-Карло, Q-Learning, SARSA, методы градиента политики, REINFORCE и Actor-Critic, рассматриваются вместе с моделями на основе планирования и глубокого усиленного обучения (DQN, DDPG, A3C).
Практическая часть книги включает использование OpenAI Gym и других сред, настройку и тестирование моделей, а также примеры кода на Python с использованием библиотек TensorFlow и PyTorch.
Формат: epub, fb2, fb3, ios.epub, mobi, pdf, txt
Математические основы включают марковские процессы принятия решений, состояния, действия, награды и политики, а также Беллмановские уравнения и итерацию ценности. Основные алгоритмы RL, такие как метод Монте-Карло, Q-Learning, SARSA, методы градиента политики, REINFORCE и Actor-Critic, рассматриваются вместе с моделями на основе планирования и глубокого усиленного обучения (DQN, DDPG, A3C).
Практическая часть книги включает использование OpenAI Gym и других сред, настройку и тестирование моделей, а также примеры кода на Python с использованием библиотек TensorFlow и PyTorch.
Формат: epub, fb2, fb3, ios.epub, mobi, pdf, txt
Зарегистрируйтесь
, чтобы посмотреть скрытый авторский контент.