Kail
Организатор
Проверенный
Организатор
- Регистрация
- 09.04.2020
- Сообщения
- 353 752
- Реакции
- 32 635
- Монеты
- 1 191
- Оплачено
- 0
- Баллы
- 0
- #SkladchinaVip
- #1
[Udemy] Deep Learning: Recurrent Neural Networks in Python [Lazy Programmer Inc.]
- Ссылка на картинку
GRU, LSTM, + more modern deep learning, machine learning, and data science for sequences
*** NOW IN TENSORFLOW 2 and PYTHON 3 ***
Learn about one of the most powerful Deep Learning architectures yet!
The Recurrent Neural Network (RNN) has been used to obtain state-of-the-art results in sequence modeling.
This includes time series analysis, forecasting and natural language processing (NLP).
Learn about why RNNs beat old-school machine learning algorithms like Hidden Markov Models.
This course will teach you:
- The basics of machine learning and neurons (just a review to get you warmed up!)
- Neural networks for classification and regression (just a review to get you warmed up!)
- How to model sequence data
- How to model time series data
- How to model text data for NLP (including preprocessing steps for text)
- How to build an RNN using Tensorflow 2
- How to use a GRU and LSTM in Tensorflow 2
- How to do time series forecasting with Tensorflow 2
- How to predict stock prices and stock returns with LSTMs in Tensorflow 2 (hint: it's not what you think!)
- How to use Embeddings in Tensorflow 2 for NLP
- How to build a Text Classification RNN for NLP (examples: spam detection, sentiment analysis, parts-of-speech tagging, named entity recognition)
All of the materials required for this course can be downloaded and installed for FREE. We will do most of our work in Numpy, Matplotlib, and Tensorflow. I am always available to answer your questions and help you along your data science journey.
This course focuses on "how to build and understand", not just "how to use". Anyone can learn to use an API in 15 minutes after reading some documentation. It's not about "remembering facts", it's about "seeing for yourself" via experimentation. It will teach you how to visualize what's happening in the model internally. If you want more than just a superficial look at machine learning models, this course is for you.
*** NOW IN TENSORFLOW 2 and PYTHON 3 ***
Learn about one of the most powerful Deep Learning architectures yet!
The Recurrent Neural Network (RNN) has been used to obtain state-of-the-art results in sequence modeling.
This includes time series analysis, forecasting and natural language processing (NLP).
Learn about why RNNs beat old-school machine learning algorithms like Hidden Markov Models.
This course will teach you:
- The basics of machine learning and neurons (just a review to get you warmed up!)
- Neural networks for classification and regression (just a review to get you warmed up!)
- How to model sequence data
- How to model time series data
- How to model text data for NLP (including preprocessing steps for text)
- How to build an RNN using Tensorflow 2
- How to use a GRU and LSTM in Tensorflow 2
- How to do time series forecasting with Tensorflow 2
- How to predict stock prices and stock returns with LSTMs in Tensorflow 2 (hint: it's not what you think!)
- How to use Embeddings in Tensorflow 2 for NLP
- How to build a Text Classification RNN for NLP (examples: spam detection, sentiment analysis, parts-of-speech tagging, named entity recognition)
All of the materials required for this course can be downloaded and installed for FREE. We will do most of our work in Numpy, Matplotlib, and Tensorflow. I am always available to answer your questions and help you along your data science journey.
This course focuses on "how to build and understand", not just "how to use". Anyone can learn to use an API in 15 minutes after reading some documentation. It's not about "remembering facts", it's about "seeing for yourself" via experimentation. It will teach you how to visualize what's happening in the model internally. If you want more than just a superficial look at machine learning models, this course is for you.
Зарегистрируйтесь
, чтобы посмотреть скрытый авторский контент.