- Регистрация
- 09.04.2020
- Сообщения
- 353 752
- Реакции
- 32 511
- Монеты
- 1 191
- Оплачено
- 0
- Баллы
- 0
- #SkladchinaVip
- #1
[Udemy] Bayesian Machine Learning in Python: A/B Testing [Lazy Programmer Inc.]
- Ссылка на картинку
-
Data Science, Machine Learning, and Data Analytics Techniques for Marketing, Digital Media, Online Advertising, and more
This course is all about A/B testing.
A/B testing is used everywhere. Marketing, retail, newsfeeds, online advertising, and more.
A/B testing is all about comparing things.
If you’re a data scientist, and you want to tell the rest of the company, “logo A is better than logo B”, well you can’t just say that without proving it using numbers and statistics.
Traditional A/B testing has been around for a long time, and it’s full of approximations and confusing definitions.
In this course, while we will do traditional A/B testing in order to appreciate its complexity, what we will eventually get to is the Bayesian machine learning way of doing things.
First, we’ll see if we can improve on traditional A/B testing with adaptive methods. These all help you solve the explore-exploit dilemma.
You’ll learn about the epsilon-greedy algorithm, which you may have heard about in the context of reinforcement learning.
We’ll improve upon the epsilon-greedy algorithm with a similar algorithm called UCB1.
Finally, we’ll improve on both of those by using a fully Bayesian approach.
Why is the Bayesian method interesting to us in machine learning?
It’s an entirely different way of thinking about probability.
It’s a paradigm shift.
You’ll probably need to come back to this course several times before it fully sinks in.
It’s also powerful, and many machine learning experts often make statements about how they “subscribe to the Bayesian school of thought”.
In sum - it’s going to give us a lot of powerful new tools that we can use in machine learning.
The things you’ll learn in this course are not only applicable to A/B testing, but rather, we’re using A/B testing as a concrete example of how Bayesian techniques can be applied.
You’ll learn these fundamental tools of the Bayesian method - through the example of A/B testing - and then you’ll be able to carry those Bayesian techniques to more advanced machine learning models in the future.
This course is all about A/B testing.
A/B testing is used everywhere. Marketing, retail, newsfeeds, online advertising, and more.
A/B testing is all about comparing things.
If you’re a data scientist, and you want to tell the rest of the company, “logo A is better than logo B”, well you can’t just say that without proving it using numbers and statistics.
Traditional A/B testing has been around for a long time, and it’s full of approximations and confusing definitions.
In this course, while we will do traditional A/B testing in order to appreciate its complexity, what we will eventually get to is the Bayesian machine learning way of doing things.
First, we’ll see if we can improve on traditional A/B testing with adaptive methods. These all help you solve the explore-exploit dilemma.
You’ll learn about the epsilon-greedy algorithm, which you may have heard about in the context of reinforcement learning.
We’ll improve upon the epsilon-greedy algorithm with a similar algorithm called UCB1.
Finally, we’ll improve on both of those by using a fully Bayesian approach.
Why is the Bayesian method interesting to us in machine learning?
It’s an entirely different way of thinking about probability.
It’s a paradigm shift.
You’ll probably need to come back to this course several times before it fully sinks in.
It’s also powerful, and many machine learning experts often make statements about how they “subscribe to the Bayesian school of thought”.
In sum - it’s going to give us a lot of powerful new tools that we can use in machine learning.
The things you’ll learn in this course are not only applicable to A/B testing, but rather, we’re using A/B testing as a concrete example of how Bayesian techniques can be applied.
You’ll learn these fundamental tools of the Bayesian method - through the example of A/B testing - and then you’ll be able to carry those Bayesian techniques to more advanced machine learning models in the future.
Зарегистрируйтесь
, чтобы посмотреть скрытый авторский контент.