Скачать Машинное обучение: выделение факторов на Python [Центр digital-профессий ITtensive]

  • Складчина создана: Дата начала
Информация
Цена: 150 РУБ
Организатор: Kail Kail
Список участников
Ссылки для скачивания Как распаковать архив?
Kail
Kail
Организатор
Проверенный
Организатор
Регистрация
09.04.2020
Сообщения
353 752
Реакции
32 527
Монеты
1 191
Оплачено
0
Баллы
0
  • #SkladchinaVip
  • #1
Машинное обучение: выделение факторов на Python [Центр digital-профессий ITtensive]
Ссылка на картинку
Чему вы научитесь
  • Процесс и модель машинного обучения
  • Заполнение пропусков в данных
  • Линейная регрессия и L1/L2 регуляризация
  • Решающие деревья и ансамбли стекинга
  • Корреляция и взаимная информация
  • Метод главных компонент (PCA)
  • Сингулярное разложение (SVD)
  • Анализ независимых компонент (ICA)
  • Многомерное шкалирование (MDS)
  • t-SNE, UMAP, LargeVis
Требования
  • Продвинутый Python
  • Основы математической статистики

Описание
Мы разберем задачу хакатона 2020 года по выделению факторов, в наибольшей степени влияющих на продолжительность жизни в России, с точки зрения фундаментальных и прикладных подходов к понижению размерности данных. В заключении построим ансамбль моделей для предсказания продолжительности жизни, базируясь на выделенных факторах.
Курс разбит на 4 части. В первой части мы последовательно пройдем все этапы работы с данными: от видов задач и их постановки до работы с моделями машинного обучения для минимизации предсказательной ошибки. Дополнительно рассмотрим фундаментальные основы построения моделей машинного обучения, базовые метрики и наиболее простые модели - линейную регрессии, решающие деревья и случайный лес. А также ансамбли машинного обучения.
Во второй части на практике разберем:
  • Очистку и предобработку данных - ETL
  • Линейную регрессию для экстраполяции данных
  • Линейную регрессию с регуляризацией для выделения факторов
  • Информационные критерии понижения размерности
В заключении создадим ансамбль стекинга из простых моделей понижения размерности.
Третья часть посвящена матричным методам:
  • Метод главных компонент (PCA)
  • Сингулярное разложение (SVD)
  • Анализ независимых компонент (ICA)
  • Положительно-определенные матрицы (NMF)
Уточним решение задачи обучения без учителя через матричные методы.
В четвертой части рассмотрим нелинейные подходы:
  • Многомерное шкалирование (MDS).
  • t-SNE
  • UMAP
  • LargeVis
Стабилизируем ансамбль понижения размерности и используем его для предсказания продолжительности жизни в России, основываясь на наиболее важных макроэкономических показателях.
Для кого этот курс:
  • Аналитики Python, изучающие машинное обучение
  • Программисты больших данных
  • Исследователи больших данных
 
Зарегистрируйтесь , чтобы посмотреть скрытый авторский контент.
Поиск по тегу:
Теги
python выделение факторов на python линейная регрессия машинное обучение сингулярное разложение центр digital-профессий ittensive
Похожие складчины
Kail
Ответы
0
Просмотры
449
Kail
Kail
Kail
Ответы
0
Просмотры
201
Kail
Kail
Kail
Ответы
0
Просмотры
303
Kail
Kail
Kail
Ответы
0
Просмотры
454
Kail
Kail
Показать больше складчин

Войдите или зарегистрируйтесь для участия в складчине

Вы должны быть авторизованны для просмотра и оценки материала

Создать аккаунт

Создать учетную запись займет не больше минуты!

Войти

Уже зарегистрированы? Просто войдите.