Kail
Организатор
Проверенный
Организатор
- Регистрация
- 09.04.2020
- Сообщения
- 353 752
- Реакции
- 32 522
- Монеты
- 1 191
- Оплачено
- 0
- Баллы
- 0
- #SkladchinaVip
- #1
Data Science. Наука о данных с нуля - 2021 [Джоэл Грас]
- Ссылка на картинку
Книга позволяет изучить науку о данных (Data Science) и применить полученные знания на практике. Она содержит краткий курс языка Python, элементы линейной алгебры, статистики, теории вероятностей, методов обработки данных. Приведены основы машинного обучения. Описаны алгоритмы k ближайших соседей, наивной байесовой классификации, линейной и логистической регрессии, а также модели на основе деревьев принятия решений, нейронных сетей и кластеризации. Рассмотрены приемы обработки естественного языка, методы анализа социальных сетей, основы баз данных, SQL и MapReduce.
Во втором издании примеры переписаны на Python 3.6, игрушечные наборы данных заменены на «реальные», добавлены материалы по глубокому обучению и этике данных, статистике и обработке естественного языка, рекуррентным нейронным сетям, векторным вложениям слов и разложению матриц.
Об авторе
Джоэл Грас работает инженером-программистом в компании Google. До этого занимался аналитической работой в нескольких стартапах. Активно участвует в неформальных мероприятиях специалистов в области науки о данных.
Формат: PDF, DjVu.
Во втором издании примеры переписаны на Python 3.6, игрушечные наборы данных заменены на «реальные», добавлены материалы по глубокому обучению и этике данных, статистике и обработке естественного языка, рекуррентным нейронным сетям, векторным вложениям слов и разложению матриц.
Об авторе
Джоэл Грас работает инженером-программистом в компании Google. До этого занимался аналитической работой в нескольких стартапах. Активно участвует в неформальных мероприятиях специалистов в области науки о данных.
Формат: PDF, DjVu.
Спойлер: Аннотация от Лабиринта на 1-ый выпуск
Книга позволяет освоить науку о данных, начав "с чистого листа". Она написана так, что способствуют погружению в Data Science аналитика, фактически не обладающего глубокими знаниями в этой прикладной дисциплине.
При этом вы убедитесь, что описанные в книге программные библиотеки, платформы, модули и пакеты инструментов, предназначенные для работы в области науки о данных, великолепно справляются с задачами анализа данных.
А если у вас есть способности к математике и навыки программирования, то Джоэл Грас поможет вам почувствовать себя комфортно с математическим и статистическим аппаратом, лежащим в основе науки о данных, а также с приемами алгоритмизации, которые потребуются для работы в этой области.
В сегодняшнем хаотическом потоке данных скрыты ответы на многие волнующие человека вопросы. Книга познакомит с методологией, которая позволит правильно сформулировать эти вопросы и найти на них ответы.
Вместе с Джоэлом Грас и его книгой:
- Пройдите интенсивный курс языка Python
- Изучите элементы линейной алгебры, математической статистики, теории вероятностей и их применение в науке о данных
- Займитесь сбором, очисткой, нормализацией и управлением данными
- Окунитесь в основы машинного обучения
- Познакомьтесь с различными математическими моделями и их реализацией по методу k-ближайших соседей, наивной байесовской классификации, линейной и логистической регрессии, а также моделями на основе деревьев принятия решений, нейронных сетей и кластеризации
- Освойте работу с рекомендательными системами, приемы обработки естественного языка, методы анализа социальных сетей, технологии MapReduce и баз данных
"Джоэл проведет для вас экскурсию по науке о данных. В результате вы перейдете от простого любопытства к глубокому пониманию насущных алгоритмов, которые должен знать любой аналитик данных".
Роит Шивапрасад, Специалист компании Amazon в области Data Science с 2014 г.
Зарегистрируйтесь
, чтобы посмотреть скрытый авторский контент.